Time-dependent problems with the boundary integral equation method
نویسنده
چکیده
Time-dependent problems that are modeled by initial-boundary value problems for parabolic or hyperbolic partial differential equations can be treated with the boundary integral equation method. The ideal situation is when the right-hand side in the partial differential equation and the initial conditions vanish, the data are given only on the boundary of the domain, the equation has constant coefficients, and the domain does not depend on time. In this situation, the transformation of the problem to a boundary integral equation follows the same well-known lines as for the case of stationary or time-harmonic problems modeled by elliptic boundary value problems. The same main advantages of the reduction to the boundary prevail: Reduction of the dimension by one, and reduction of an unbounded exterior domain to a bounded boundary. There are, however, specific difficulties due to the additional time dimension: Apart from the practical problems of increased complexity related to the higher dimension, there can appear new stability problems. In the stationary case, one often has unconditional stability for reasonable approximation methods, and this stability is closely related to variational formulations based on the ellipticity of the underlying boundary value problem. In the timedependent case, instabilities have been observed in practice, but due to the absence of ellipticity, the stability analysis is more difficult and fewer theoretical results are available. In this article, the mathematical principles governing the construction of boundary integral equation methods for time-dependent problems are presented. We describe some of the main algorithms that are used in practice and have been analyzed in the mathematical literature.
منابع مشابه
Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملA General Boundary Element Formulation for The Analysis of Viscoelastic Problems
The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003